20 research outputs found

    The Relationship Between Plasma Flow Doppler Velocities and Magnetic Field Parameters During the Emergence of Active Regions at the Solar Photospheric Level

    Full text link
    A statistical study has been carried out of the relationship between plasma flow Doppler velocities and magnetic field parameters during the emergence of active regions at the solar photospheric level with data acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). We have investigated 224 emerging active regions with different spatial scales and positions on the solar disc. The following relationships for the first hours of the emergence of active regions have been analysed: i) of peak negative Doppler velocities with the position of the emerging active regions on the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the solar disc centre (the vertical component of plasma flows); iii) of peak positive and negative Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the limb (the horizontal component of plasma flows); iv) of the magnetic flux growth rate with the density of emerging magnetic flux; v) of the Doppler velocities and magnetic field parameters for the first hours of the appearance of active regions with the total unsigned magnetic flux at the maximum of their development.Comment: 14 pages, 8 figures. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102-103, P.4.13, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun

    Full text link
    The dynamics of horizontal plasma flows during the first hours of the emergence of active region magnetic flux in the solar photosphere have been analyzed using SOHO/MDI data. Four active regions emerging near the solar limb have been considered. It has been found that extended regions of Doppler velocities with different signs are formed in the first hours of the magnetic flux emergence in the horizontal velocity field. The flows observed are directly connected with the emerging magnetic flux; they form at the beginning of the emergence of active regions and are present for a few hours. The Doppler velocities of flows observed increase gradually and reach their peak values 4-12 hours after the start of the magnetic flux emergence. The peak values of the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are 800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed substantially exceed the separation velocities of the photospheric magnetic flux outer boundaries. The asymmetry was detected between velocity structures of leading and following polarities. Doppler velocity structures located in a region of leading magnetic polarity are more powerful and exist longer than those in regions of following polarity. The Doppler velocity asymmetry between the velocity structures of opposite sign reaches its peak values soon after the emergence begins and then gradually drops within 7-12 hours. The peak values of asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and 710-940 m/s, respectively. An interpretation of the observable flow of photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102, P.4.12, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    Conversion of phosphoenolpyruvate in Venus gallina and Scapharca inaequivalvis at anoxia stress I. Time dependency

    No full text
    1. 1. The origin of carbon incorporated in succinate in the first 12 hr of environmental anoxia was studied in two bivalve species of the Northern Adriatic Sea. 2. 2. Posterior adductor muscles were excised after various periods of exposure to anoxic seawater and incubated under nitrogen in the presence of metabolic inhibitors (aminooxyacetate, iodoacetate, 3-mercaptopicolinate) and UL-14C substrates, in order to examine the redirection of glycolytic flux from pyruvate kinase to phosphoenolpyruvate carboxykinase. 3. 3. Changes in the levels of key metabolites and the distribution of radiolabeled glucose and aspartate indicate that PEP-carboxykinase did not participate in anaerobic metabolism of these species for at least the initial 12 hr of anaerobiosis.

    Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa

    No full text
    Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness1, affecting 0.9–4% of women and 0.3% of men2–4, with twin-based heritability estimates of 50–60%5. Mortality rates are higher than those in other psychiatric disorders6, and outcomes are unacceptably poor7. Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes

    Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa

    No full text
    Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness1, affecting 0.9–4% of women and 0.3% of men2–4, with twin-based heritability estimates of 50–60%5. Mortality rates are higher than those in other psychiatric disorders6, and outcomes are unacceptably poor7. Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes
    corecore